CONTROL OF ENERGY EFFICIENCY IN INDUSTRY AND HOUSING AND COMMUNAL SERVICES
Sign | Register
UDC 681.2
Analysis of the dependence of the Strouhal number in the measurement equation for vortex sonic flowmeters
A.P. Lapin, South Ural State University, Chelyabinsk, Russian Federation, a_lapin@mail.ru
A.M. Druzhkov, South Ural State University, Chelyabinsk, Russian Federation, sandruzh@gmail.com
K.V. Kuznetsova, South Ural State University, Chelyabinsk, Russian Federation, kristi.kuznetsova@gmail.com
Abstract
The article describes a study of the Strouhal number in a wide range of flow measurement at different temperatures of the medium. It is established that the value of the Strouhal number is not constant over the entire range of measurement and has significant non-linearity at low flow. With the use of quality indicators was done choosing the best mathematical model describing the dependence of the Strouhal number of the flow rate at different temperatures.A comparison of the chosen mathematical model conversion function with the currently used in mass production flow was done. Description of Strouhal number in the form of non-linear functions, depending on the frequency of vortex shedding and fluid temperature, can significantly reduce the measurement error at low flow. We proposed a method for adapting a nonlinear conversion function of the investigated flow for meters with a large diameter flow section.
Keywords
vortex sonic flowmeters, convertion functions, the Strouhal number, weighted least squares method
References
1. Kremlevskiy P.P. Raskhodomery i schetchiki kolichestva: spravochnik [Flowmeters and Counters: Hand-book]. Leningrad: Mashinostroenie, 1989. 701 p.
2. Baker R.C. Flow Measurement Handbook. New York: Cambridge University Press, 2000. 524 p.
3. Pankanin G.L. The Vortex Flowmeter: Various Methods of Investigating Phenomena. Measurement Science and Technology, 2005, no. 16, pp. R1–R16.
4. Zheng D., Zhang T., Xing J., Mei J. Improvement of the HHT Method and Application in Weak Vortex Signal Detection. Measurement Science and Technology, 2007, no. 18, pp. 2769–2776.
5. Sun H., Zhang T. Digital Signal Processing Based on Wavelet and Statistics Method for Vortex Flowmeters. Proc. of the Third International Conference on Machine Learning and Cybernetics, 2004, pp. 3160–3163.
6. Poremba A., Blischke F. Robust Vortex Flowmeter Based on a Parametric Frequency Estimator. International Conference on Industrial Electronics, Control, Instrumentation, and Automation, Power Electronics and Motion Control, 1992, vol. 3, pp. 1541–1544.
7. Kawano T., Matsunaga Y., Andon T., Yasumatsu A. Ultrasonic Vortex Flowmeter ultra YewfloULF200. Yokogawa Technical Report English Edition, 1998, no. 25, pp. 23–25.
8. De-ming H., Wen-jun L., Yong-jun Zh. A Vortex Flowmeter Based on Multiprocessor Technique. International Conference on Networking and Information Technology, 2010, pp. 322–325.
9. Lapina, Е.А. Algoritmy obrabotki informatsii pri vybore i obosnovanii funktsii preobrazovaniya izmeritel’nykh preobrazovateley davleniya dlya ASU TP [Information Processing Algorithms at a Choice and Justification of Transformation Function of Pressure Measuring Converters for Industrial Control System]: avtoref. dis. … kand. tehn. nauk. Chelyabinsk, 2011. 21 p.
10. RMG 29-99 GSI. Metrologiya. Osnovnye terminy i opredeleniya [Main thermions and definitions]. Moscow, Izdatel'stvo standartov, 2000. 59 p.
11. Volker H., Windorferb H. Comparison of Pressure and Ultrasound Measurements in Vortex Flow Meters. Measurement, 2003, no. 33, pp. 121–133.
12. Lapin, A.P., Druzhkov A.M. Selection of Model for Convertion Function of Vortex Sonic Flowmeters [Vybor modeli funktsii preobrazovaniya vikhreakusticheskikh raskhodomerov]. Bulletin of the South Ural State University. Series “Computer Technologies, Automatic Control & Radio Electronics”, 2012, vol. 17, no 294, pp. 161–164. (in Russian)
13. Lapin, A.P., Druzhkov A.M. Selection and Research of Two-factor Model for Conversion Function of Vortex Sonic Flowmeters [Vybor i issledovaniye dvuhfaktornoy modeli funktsii preobrazovaniya vikhreakusticheskikh raskhodomerov]. Bulletin of the South Ural State University. Series «Computer Technologies, Automatic Control & Radio Electronics», 2013, vol. 13, no. 2, pp. 4–12. (in Russian)
14. Lapin, A.P., Druzhkov A.M. Usage of Weighted Least Squares Method Conversion Functions for Vortex Sonic Flowmeters Research [Primenenie vzveshennogo metoda naimen'shikh kvadratov pri issledovanii funktsii preobrazovaniya vikhreakusticheskikh raskhodomerov]. Bulletin of the South Ural State University. Series “Computer Technologies, Automatic control & Radio Electronics”, 2013, vol.
13, no. 2, pp. 109–112.
15. Draper N. Prikladnoy regressionnyy analiz: v 2 kn. [Applied Regression Analysis]. Moscow, Finansy i statistika, 1986, kn. 2. 351 p.
16. Tawackolian, K. Calibration of an Ultrasonic Flowmeter for hot water / K. Tawackolian, O. Büker, J. Hogendoorn, T. Lederer. Flow Measurement and Instrumentation, 2012, no. 33, pp. 166–173.
Source
Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics, 2013, vol. 13, no. 4, pp. 70-77. (in Russ.) (The main)