CONTROL OF ENERGY EFFICIENCY IN INDUSTRY AND HOUSING AND COMMUNAL SERVICES Sign | Register |
UDC 681.513.5 Building thermal mode control with combinied heating system M.M. Tverskoy, South Ural State University, Chelyabinsk, Russian Federation, julisus@mail.ru D.V. Rumyantsev, South Ural State University, Chelyabinsk, Russian Federation, dimfirst@gmail.com Abstract The way of heating control with air and radiator sources in the heating system of the building is considered in the article. Model predictive control algorithm for optimal thermal control in the building is presented. The algorithm implements thermal control over receding horizon with set temperature diagram. Computing of thermal environment prediction is based on the thermal model of the building. The energy cost function under certain boundaries is used to estimate optimal control strategy over receding horizon. The summarized cost for electrical and thermal energy under set tariffs are taken into account in the cost function over receding horizon. The mathematical thermal model of the building and cost function were defined for air heating system with progressive and relay control scheme of the fan.Modeling results of predictive control algorithm for thermal control in the building with set temperature diagram and set tariffs for electrical and thermal energy were shown and analyzed. Keywords building thermal mode, combined heating, predictive control References 1. Tabunshchikov Yu.A., Brodach M.M. Eksperimental'noe issledovanie optimal'nogo upravleniya raskhodom energii [Experimental Research of Energy Outlay Optimal Control]. AVOK, 2006, no.1, pp. 32–36. 2. Malyavina E.G. Teplovaya nagruzka na sistemy luchistogo otopleniya. Sravnitel'nyy analiz [Thermal Loading on the Radiant Heating Systems Comparative Analysis]. AVOK, 2009, no.7, pp. 48–58. 3. Tverskoy M.M., Rumyantsev D.V. Postanovka zadachi optimal'nogo upravleniya teplovym rezhimom zdaniya pri kombinirovannoy sisteme otopleniya. [Problem Definition of Building Thermal Mode Optimal Control under Combined Heating System], Bulletin of the South Ural State University. Series «Computer Technologies, Automatic Control & Radio electronics», 2012, vol. 16, no. 23 (282), pp. 16–20. (in Russian) 4. GOST 30494-96. Zdaniya zhilye i obshchestvennye. Parametry mikroklimata v pomeshcheniyakh [Buildings Inhabited and Public. Microclimate Parameters in Rooms]. Moscow, Gosstroy Rossii, GU TsPP, 1999. 7 p. 5. Pupkov K.A., Egupov N.D. Metody klassicheskoy i sovremennoy teorii avtomaticheskogo upravleniya. Uchebnik v 5-i tt. T. 1: Teoriya optimizatsii sistem avtomaticheskogo upravleniya [Methods of Classic and Modern Automatic Control Theory. Textbook in 5 Books, Т. 1: Optimization Theory of Automatic Control Systems]. Moscow, Izdatel'stvo MGTU im. N.E. Baumana, 2004. 744 p. 6. Vasil'ev F.P. Metody optimizatsii [Optimization Methods]. Moscow, Izd-vo «Faktorial Press», 2002. 824 p. 7. Panteleev A.V., Letova T.A. Metody optimizatsii v primerakh i zadachakh: Ucheb. Posobie [Optimization Methods in Examples and Tasks: Manual], Moscow, Vyssh. shk., 2005. 544 p. 8. Galeev E.M., Tikhomirov V.M. Optimizatsiya: teoriya, primery, zadachi [Optimization: Theory, Examples. Tasks]. Moscow, Editorial URSS, 2000. 320 p. 9. Seydzh E.P., Uayt Ch.S. Optimal'noe upravlenie sistemami [System Optimal Control]. Moscow, Radio i svyaz', 1982. 392 p. 10. Hazyuk I., Ghiaus C., Penhouet D. Optimal Temperature Control of Intermittently Heated Buildings Using Model Predictive Control: Part II. Control Algorithm. Building and Environment, 2011, no. 51, pp. 388–394. 11. Siroky J., Oldewurtel F., Cigler J. Experimental Analysis of Model Predictive Control for an Energy Efficient Building Heating System. Applied Energy, 2011, no. 88, pp. 3079–3087. 12. Privara S., Siroky J., Ferkl L. Model Predictive Control of a Building Heating System: The First Experience. Energy and Buildings, 2010, no. 43, pp. 564–572. 13. Oldewurtel F., Parisio A., Jones C.N. Use of Model Predictive Control and Weather Forecasts for Energy Efficient Building Climate Control. Energy and Buildings, 2011, no. 45, pp. 15–27. 14. Saffer D.R., Doyle F.J. Analysis of Linear Programming in Model Predictive Control. Computers & Chemical Engineering, 2004, no. 28, pp. 2749–2763. 15. Privara S., Vana Z., Zacekova E. Building Modeling: Selection of the Most Appropriate Model for Predictive Control. Energy and Buildings, 2012, no. 55, pp. 341–350. 16. Qin J.S., Badgwell T.A. A Survey of Industrial Model Predictive Control Technology. Control Engineering Practice, 2003, no. 11, pp. 733–764. 17. Borrelli F., Bemporad A., Morari M. Predictive Control for linear and hybrid systems, 2013. 404 p. Available at: http://www.mpc.berkeley.edu/mpc-course-material/BBMbook_Cambridge_newstyle.pdf?attredirects=0&d=1 (accessed 25.06.2013). 18. Zagrebaev A.M., Kritsyna N.A., Kulyabichev Yu.P. Metody matematicheskogo programmirovaniya v zadachakh optimizatsii slozhnykh tekhnicheskikh sistem: uchebnoe posobie [Mathematic Programming Methods in the Complex Technic System Optimization Tasks: Manual]. Moscow, MIFI, 2007. 332 p. 19. Kamke E. Spravochnik po obyknovennym differentsial'nym uravneniyam [Directory on the Ordinary Differential Equations]. Moscow, Nauka, 1971. 576 p. 20. Akulich I.L. Matematicheskoe programmirovanie v primerakh i zadachakh [Mathematic Programming in Examples and Tasks]. Moscow, Vyssh. shk., 1986. 319 p. Source Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics, 2013, vol. 13, no. 4, pp. 4-15. (in Russ.) (The main) |