Sign | Register
UDC 621.383.933 + 004.43.021
Modelling of Bifurcation Processes of the Modes of the Current Regulator of Light-Emitting Diodes
G.A. Saeed, South Ural State University, Chelyabinsk, Russian Federation,
This article is devoted to the development of algorithms for simulation of processes of bifurcations mode of current regulator of LED lighting products. In this paper, algorithm for calculation of the bifurcation diagram is carried out. The character of the complication oscillation when changing parameters is illustrated. New type of C-bifurcation, leading to the smooth transition from the twofrequency oscillations to a stable periodic mode is identified. The mathematical model of this circuit is described. Algorithms are implemented in software. The results of testing the program written in the programming language C ++ are shown.
modeling, light-emitting diodes, stabilizer, bifurcation diagram
1. Philips, svetodiodnye osveshchenie, spravochnik, printsip raboty, preimushchestva i oblasti primeneniya [LED Lighting, Handbook, Principles of Operating, Advantages and Field of Applications]. Philips, Solid-State Lighting Solutions, Inc, 2010. 150 p.
2. Zhusubaliev T.J. Bifurkatsii v shirotno-impul'snykh sistemakh avtomaticheskogo upravleniya [Bifurcation in Pulse-width Automatic Control Systems]. Kursk, Kursk state technical Univ. Publ., 2007. 100p.
3. Zhusubaliev J.T. Kolebaniya, bifurkatsii i khaos v tekhnicheskikh sistemakh [Oscillations, Bifurcations and Chaos in Technical Systems]. Kursk, Kursk State Technical Univ. Publ., 2000. 166 p.
4. Pasinkov V.V. Poluprovodnike pribory [Semiconductor Devices]. 5th edition, Publisher Lan, 2001. 480 p.
5. Anishenko V.S., Vadivasova T.E. Lektsii po nelineynoy dinamike [Lectures on Nonlinear Dynamics]. Moscow; Izhevsk, Regular and Chaotic Dynamics, 2011. 516 p.
6. Feigin M.I. [Doubling of the Oscillation Period in C-bifurcations in Piecewise Continuous Systems]. Applied Mathematics and Mechanics, 1970, vol. 34, no. 5, pp. 861–869. (in Russ.)
7. Feigin M.I. O strukture S-bifurkatsionnykh granits kusochno-nepreryvnykh sistem [The Structure of the C-bifurcation Boundaries of Piecewise Continuous Systems]. Applied Mechanics and Mathematics, 1978, vol. 42, no. 5, pp. 820–829. (in Russ.)
8. Yuan G., Banerjee S., Ott E., Yorke J.A. Border-collision Bifurcation in the Buck Converter. IEEE Trans. Circuits Syst. I. 1998, vol. 45, pp. 707–716. DOI: 10.1109/81.703837
9. Zhusubaliev Z.T. [To the Study of Chaotic Modes of Voltage Converter with Pulse Width Modulation]. Electrical, 1997, no. 6, pp. 40–46. (in Russ.)
10. Zhusubaliev J.T., Kalakov Y.V., Pinaev S.V., Rudakov V.N., [Determined and Chaotic Modes Voltage Converter with Pulse Width Modulation]. News of the Russian Academy of Sciences. Energy, 1997, no. 3. pp. 157–170. (in Russ.)
11. Zhusubaliev J.T. [Bifurcation and chaotic motions in relay automatic control systems ]. Mat. nauchno-teknich. konferentsiya “Raspoznovanie-97” [Math. Scientific-techn. Conf. “Recognition-97”]. Kursk, 1997, pp. 25–29. (in Russ.)
12. Zhusubaliyev Zh.T., Titov V.S., Emelyanova E.Yu., Soukhoterin E.A. C-bifurcations in the Dynamics of Control System with Pulse-width Modulation. Proc. of Second Int. Conf. COC'2000. 2000. (St.Petersburg, Russia, July 5–7), pp. 203–204.
13. Feigin M.I. [Bifurcation Approach to the Study of Boat Control under the Effects of Wind]. Bulletin of Nizhny Novgorod University. Series Mathematical Modeling and Optimal Control, 1998, vol. 2 (19), pp. 41–49. (in Russ.)
14. Blazejczyk-Okolewska В., Czolczynski K., Kapitaniak Т., Wojewoda J. Chaotic Mechanics in Systems with Impacts and Friction. Singapore, World Scientific, 1999. 200 p.
15. Fradkov A.L., Introduction to Control of Oscillations and Chaos. Singapore, World Scientific, 1998. 391 p.
16. Chen G., Dong X., From Chaos to Order: Methodologies, Perspectives and Applications. Singapore, World Scientific, 1998. 462 p. DOI: 10.1142/3033
17. Feigin M.I., The Increasingly Complex Structure of the Bifurcation Tree of a Piecewise-smooth System. J. Appl. Maths. Mechs, 1995, no. 59, pp. 853–863.
18. Shaw S., Holmes P. A Periodically Forced Piecewise Linear Oscillator. J. Sound Vib., 1983, vol. 90, no. 1, pp. 129–155.
19. Thompson J., Ghaffari R. Chaotic Dynamics of an Impact Oscillator. Phys. Rev. B, 1983, vol. 27, no. 3, pp. 1741–1743.
Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics, 2015, vol. 15, no. 3, pp. 40-49. (in Russ.) (Management of Engineering Systems)