CONTROL OF ENERGY EFFICIENCY IN INDUSTRY AND HOUSING AND COMMUNAL SERVICES
Sign | Register
UDC 517.9 + 681.2.08
Optimal measurement of dynamically distorted signals
Alexander Leonidovich Shestakov, South Ural State University (national research University), Chelyabinsk, Rector, shal@susu.ac.ru
Georgiy Anatol'evich Sviridyuk , South Ural State University (national research University), Chelyabinsk, Professor, georgy_sviridyuk@mail.ru
Abstract
There has been suggested new approach to measure a signal distorted as by inertial measurement transducer, as by its resonances.
Keywords
optimal measurement, dynamically distorted signals, resonances, optimal control, Leontief type system
References
1. Granovskii, V.A. Dynamic Measurements / V.A. Granovskii. – Leningrad: Energoizdat, 1984. (in Russian)
2. Shestakov, A.L. Dynamic accuracy of measurement transduser with a sensor–model based compensating divice / A.L. Shestakov // Metrology. – 1987. – № 2. – C. 26 – 34. (in Russian)
3. Derusso, RM. State Variables for Engineers /P.M. Derusso, R.J. Roy, CM. Close. – N.–Y.; London; Sydney: Wiley, 1965.
4. Shestakov, A.L. Dynamic error correction method / A.L. Shestakov / / IEEE Transactions on Instrumentation and Measurement. – 1996. – V. 45, №1. – P. 250 – 255.
5. Shestakov, A.L. A new approach to measurement of dinamically distorted signal / A.L. Shestakov, G.A. Sviridyuk / / Vestn. SUSU, seriya «Mathematicheskoe modelirovanie i programmirovanie». – 2010. – №16 (192), vyp. 5. – P. 116 – 120. (in Russian)
6. Keller, A.V. The regularization property and the computational solution of the dynanic measure problem / A.V. Keller, E.I. Nazarova / / Vestn. SUSU, seriya «Mathematicheskoe modelirovanie i programmirovanie>. – 2010. – №16 (192), vyp. 5. – P. 32 – 38. (in Russian)
7. Bizyaev, M.N. Dynamic models and algorithms for restoring the dynamically destorted signals in measuring systems using in sliding modese [Text]: Ph.D. Thesis: 05.13.01 / M.N. Bizyaev. – Chelyabinsk, 2004.– 179 с (in Russian)
8. Iosifov, D.Y. Dynamic models and signal restoration algorithms for measurements systems with observable state vector: Ph.D. Thesis: 05.13.01 / D.Y. Iosifov. – Chelyabinsk, 2007. – 162 p. (in Russian)
9. Shestakov, A.L. Dynamical measurement as an optimal control problem / A.L. Shestakov, G.A. Sviridyuk, E.V. Zaharova // Obozrenie prikladnoy i promishlennoy matematiki. – 2009. – T. 16, vyp. 4. – С 732 – 733. (in Russian)
10. Sviridyuk, G.A. Numerical solutions of systems of equations of Leontieff type / G.A. Sviridyuk, S.V. Brychev // Rus. Math. – 2003. – V. 47, №8. – P.44 – 50.(in Russian)
11. Sviridyuk, G.A. Linear Sobolev Type Equations and Degenerate Semi–groups of Operators / G.A. Sviridyuk, V.E. Fedorov. – Utrecht; Boston; Koln; Tokyo: VSP, 2003.
12. Sviridyuk, G.A. The Showalter–Sidorov problem as a phenomenon of the Sobolev type equations / G.A. Sviridyuk, S.A. Zagrebina // Izvestia ISU. seriya «Mathematies>. – Irkutsk, 2010. – T. 3, № 1. – С 104 – 125. (in Russian)
13. Zamyshlyaeva, A.A. The initial–finish value problem for the Boussinesque–Love equation defined on graph / A.A. Zamyshlyaeva, A.V. Yuzeeva // Vestn. SUSU, seriya . – 2010. – №16 (192), vyp. 5. – P. 23–31 . (in Russian)
14. Manakova, N.A. Optimal control to solutions of the Showalter–Sidorov problem for a Sobolev type equation / N.A. ManaKOva, E.A. Bogonos / / Izvestia ISU. seriya «Mathematics». – Irkutsk, 2010. – T. 3,№ 1. – С 42 – 53. (in Russian)
15. Zagrebina, S.A. About Showalter–Sidorov problem / S.A. Zagrebina // Izvestia VUZ. Mathematics. – 2007.– № 3.–C. 22 – 28. (in Russian)
16. Fedorov, V.E. Optimal control problem for one class of degenerate equations / V.E. Fedorov, M.V. Plehanova // Izvestia RAN. Theory and systems of control. – 2004. –T. 9, № 2. – C. 92 – 102. (in Russian)
17. Keller, A.V. A numerical solving optimal control problem for degenerate linear systems of ordinary differential equations type system with Showalter–Sidorov initial condition / A.V. Keller // Vestn. SUSU, seriya «Mathematicheskoe modelirovanie i programmirovanie>. – 2010. – №27 (127). vyp. 2. – P. 50 – 56. (in Russian)
Source
Bulletin of the South Ural State University. Series « Mathematical modeling and programming». 2011. №17(234). Pp. 70–75. (The main)